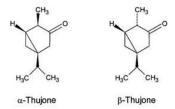


Draft NTP Technical Report TR570 on α,β -Thujone

Michelle Hooth, PhD, DABT (Chad Blystone, PhD, DABT)

National Institute of Environmental Health Sciences



NTP Technical Reports Peer Review Meeting January 26, 2011

Nomination

- Thujone is a monoterpene ketone found in several plant species
- It exists in nature as a mixture of α and β stereoisomeric forms
- Thujone was nominated by the National Cancer Institute (NCI) based on concerns of:
 - Widespread exposure
 - Lack of toxicity and carcinogenicity data

Human Exposure

- Uses of Thujone include herbal medicines, food and beverage flavorings, cosmetic products and repellants
- Direct use of Thujone as a food additive banned in the U.S., although certain herbs (e.g. sage) that contain Thujone have Generally Recognized As Safe (GRAS) status
- Concentration allowed in the European Union (EU): 35 mg/kg in alcoholic beverages made from Artemisia species; 0.5 mg/kg in nonalcoholic beverages
- Estimated 97.5th percentile intake from France and Britain is 44.3 and 14.2 μg/kg/d, respectively

Thujone Activity

- α-Thujone is the principal component of Absinthe
 - Associated with convulsions, hallucinations, and mental deterioration
 - Widely banned in early 1900s, Absinthe allowed in European Union in early 1990s and now available over the Internet
- Thujone administered to rodents induces seizures
- α-Thujone is a GABA_A receptor antagonist
 - GABA is the chief inhibitory neurotransmitter in the central nervous system
 - GABA antagonists cause muscle spasms and convulsions

Study Rationale and Objectives

- Objective: characterize the toxicity and carcinogenic activity of Thujone in male and female F344/N rats and B6C3F1 mice
- · Study design:
 - Genetic toxicity studies (in vitro and in vivo)
 - Subchronic gavage studies in $\alpha\text{-}$ and $\alpha,\beta\text{-}Thujone$
 - Toxicokinetic studies
 - Chronic gavage studies in α,β -Thujone

Two week studies of α -Thujone and α , β -Thujone

- α -Thujone and an α,β -Thujone mixture were evaluated
- 0, 1, 3, 10, 30, and 100 mg/kg/d administered via gavage (aqueous 0.5% methyl cellulose)
- · Two week studies in rats:
 - α: Female survival decreased in the 100 mg/kg/d group; seizures observed in females
 - α,β: Survival unaffected; seizures not observed
- · Two week studies in mice:
 - α: Male and female survival decreased in 100 mg/kg/d group; seizures observed in males
 - α,β: Male and female survival decreased in 100 mg/kg/d group; seizures not observed

Three month studies of α,β -Thujone

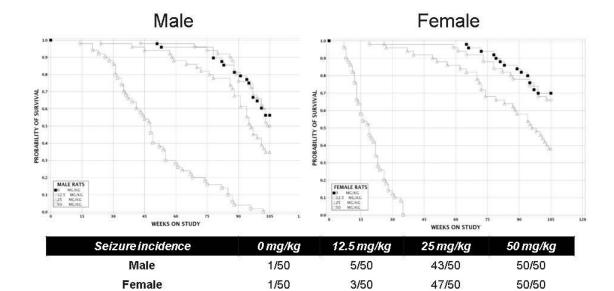
- α,β-Thujone selected for testing since it represents common human exposure
- · Three month study in rats:
 - 0, 12.5, 25, 50, 75, 100 mg/kg/d via gavage
 - Seizures observed in ≥50 mg/kg/d males and ≥25 mg/kg/d females
 - Survival decreased in the 75 and 100 mg/kg/d males and females
 - Brain, pituitary gland, lung, spleen (male), thymus, kidney (female) lesions present
 - Extended diestrus in 50 mg/kg/d female rats
- · Three month study in mice:
 - 0, 6.25, 12.5, 25, 50, 75 mg/kg/d via gavage
 - Seizures observed in male ≥50 mg/kg/d and female ≥25 mg/kg/d groups
 - Survival decreased in 50 and 75 mg/kg/d males and females
 - Lung lesions present in males and females

Genetic Toxicology of Thujone

- Bacterial assays (Salmonella and E. Coli) negative for $\alpha\text{-}$ and $\alpha,\beta\text{-}$ Thujone
- $\alpha,\beta\text{-Thujone}$ did not increase micronucleated erythrocytes in male mice after 3 month exposure
- α, β -Thujone increased micronucleated erythrocytes in female mice after 3 month exposure
 - Increase in female 50 mg/kg/d group
 - Significant positive trend

Dose Selection for Chronic α,β -Thujone Exposure

- Dose levels selected for chronic exposure (2 year):
 - 0, 12.5, 25, and 50 mg/kg/d for rats:
 - · No decreased survival or limiting pathology observed in 50 mg/kg/d group
 - Mild and transient seizures observed in 50 mg/kg/d group considered not likely to affect survival
 - 0, 3, 6, 12, and 25 mg/kg/d for mice:
 - · No decreased survival or limiting pathology observed in 25 mg/kg/d group
 - Mild and transient seizures observed in 25 mg/kg/d group considered not likely to affect survival
 - Fourth group added since exact dose difficult to determine in 3 month study



Pharmacokinetics of α -Thujone

- α -Thujone kinetics evaluated after single administering α or α/β -thujone in male and female B6C3F1 mice and F344/N rats via IV and oral routes
 - $\,\alpha\text{-Thujone}$ was rapidly eliminated in mice (20-30 min) and rats (2-3 hr)
 - α-Thujone bioavailability was lower in mice than rats
 - $\alpha\mbox{-Thujone}$ concentration was greater in the brain compared to plasma (female rat > male rat)

F344/N Rat Survival and Seizure Incidence

Weight loss in males and females ≤10%

Preputial Gland Neoplasm Incidence in Male F344/N Rats

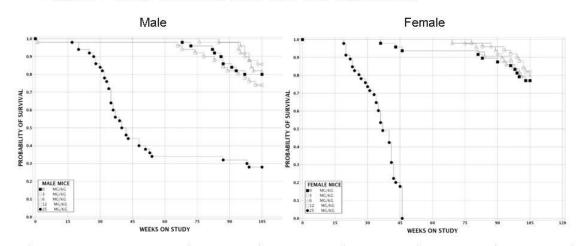
Preputial Gland	0 mg/kg	12.5 mg/kg	25 mg/kg 4/50 5/50 9/50* (18%)	
Adenoma	2/49	1/49		
Carcinoma	1/49*	0/49		
Adenoma or Carcinomaª	3/49*	1/49		

 $^{^*}p$ < 0.05; * in control group indicates statistically significant trend. a Historical Control: same route 6.1% (6/99; 6,6%), all routes 5.2% (68/1295; 0-12%)

Pheochromocytoma Incidence in Male F344/N Rats

Pheochromocytoma	0 mg/kg	12.5 mg/kg	25 mg/kg 12/49* (24%) 1/49 13/49* (27%)	
Benign ^a	6/50*	8/50		
Malignant	0/50	0/50		
Benign or malignant ^b	6/50*	8/50		

 $^{^{\}circ}p < 0.05;^{*}$ in control group indicates statistically significant trend. $^{\circ}$ Historical Control: same route 13.0% (13/100; 12,14%), all routes 14.1% (183/1295; 6-22%) $^{\circ}$ Historical Control: same route 14.0% (14/100; 12,16%), all routes 16.1% (208/1295; 6-26%)



Selected Non-Neoplastic Lesion Incidences in F344/N Rats

- Brain necrosis increased in 50 mg/kg/d males and brain pigmentation increased in 50 mg/kg/d males and females
- Spleen pigmentation increased in males (25 and 50 mg/kg/d) and females (50 mg/kg/d)
- Pituitary non-neoplastic lesions increased in males (50 mg/kg/d) and females (25 and 50 mg/kg/d)
- · Kidney mineralization increased in males at all doses

B6C3F1 Mice Survival and Seizure Incidence

SeizureIncidence	0 mg/kg	3 mg/kg	6 mg/kg	12 mg/kg	25 mg/kg
Male	0/50	0/50	0/50	0/50	41/50
Female	1/50	1/50	0/50	0/50	50/50

Weight loss in ≤12 mg/kg/d males and females <5%

Thujone Chronic Study Conclusions

- Male F344/N rats:
 - Some evidence of carcinogenic activity: Increase incidence of preputial gland neoplasms
 - Equivocal evidence of carcinogenic activity: Increased incidence of benign pheochromocytoma of the adrenal medulla may have been related to administration
- Female F344/N rats: No evidence of carcinogenic activity
- · Male and Female B6C3F1 Mice: No evidence of carcinogenic activity

Questions/Comments